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Introduction

Introduction

In many chronic disease settings subjects are seen at regular
intervals and the treatment that they receive is dependent on
their evolving history of time-dependent covariates

A dynamic treatment regimen is a rule (or set of rules) that
define how the treatment depends on this history

Goal: Using observational data we wish to estimate and perform
inference for survival under multiple dynamic treatment regimens

1 Estimate survival under a single defined treatment regimen

2 Compare survival across multiple treatment regimens
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Introduction & Motivation

Motivating Example - Epoetin Dosing Strategies

Dialysis patients are typically given epoetin (Epo) for the
correction of anemia

At repeated visits, hematocrit (Hct) and other covariates are
observed and the dose of epoetin is adjusted accordingly

Known association between higher Hct and improved quality
of life, reduced hospitalizations and reduced mortality
[Ofsthun et al., 2003, Jones et al., 2004, Li and Collins, 2004]

Some evidence that after adjusting for Hct, a higher epoetin
dose is associated with higher mortality [Zhang et al., 2004]

No true consensus as to the best target Hct range

Scientific Goal: Use Medicare data to compare survival under
dosing regimens with different target hematocrit ranges
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Notation

Observe i = 1 . . .N individuals at regular intervals t = 0, 1, 2, . . .

Li (t) vector of possibly time-varying covariates measured at t

here assume L1i (t) is hematocrit

Vi = Li (0) is the vector of baseline covariates

Zi (t) the treatment/dose of drug prescribed at visit t

Ti the time from baseline to death

Di (t) is an indicator of death in the time period (t, t + 1]

Use bars to represent history up to and including time t

L̄i (t) = {Li (s) : 0 ≤ s ≤ t}
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Treatment Regimen Definition

Examine survival under pre-defined treatment regimens G such as:

Zi (t)|Zi (t−1), L1i (t) ∈

 Zi (t − 1)× (p1, p2) if L1i (t) > b2

Zi (t − 1)× (p3, p4) if L1i (t) ∈ [b1, b2]
Zi (t − 1)× (p5, p6) if L1i (t) < b1

[b1, b2] is the target hematocrit/hemoglobin range

p’s define allowable ranges of multiplicative change in dose

for example: (b1, b2) = (33, 39); (p1, p2) = (0.5, 0.75);
(p3, p4) = (0.75, 1.25); (p5, p6) = (1.25, 1.5)

A regimen G is fully defined by a set of (b1, b2, p1, . . . , p6)

Let Aik(t) be an indicator of subject i ’s adherence to a
regimen Gk at time t
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Introduction & Motivation

Motivating Example - Epoetin Dosing Strategies

CREATE trial: No significant reduction in cardiovascular
events for group targeting 13.0-15.0 g/dL vs 10.5-11.5 g/dL

i.e. (b1, b2) = (13.0, 15.0) for group 1 [Drüeke et al., 2006]
Hazard Ratio 0.78; 95% CI, 0.53 to 1.14 0.53 to 1.14;

March 2007 FDA black box warning advising...

“physicians to monitor red blood cell levels (hemoglobin) and
to adjust the ESA dose to maintain the lowest hemoglobin
level needed to avoid the need for blood transfusions.”
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Existing Statistical Approaches

G-estimation of Structural Nested Models

Most often use an Accelerated Failure Time model for survival
under treatment/no treatment
ex) effect of prophylaxis therapy for pneumonia on survival in
AIDS subjects [Robins et al., 1992]

Optimal Dynamic Treatment Regimens

We are not interested in optimality, regimens are deterministic,
would be hard to adjust for flexible adherence [Murphy,
2003, Robins, 2004]

Marginal Structural Models

ex) Cox model comparing regimens for starting HAART when
defined at baseline [Hernán et al., 2006]
Can be extended to suit our needs
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Artificial Censoring

In reality, most subjects will not be adherent to the treatment
regimen under consideration at all times.

Estimate the survival experience that the cohort of subjects
would have had if they had truly been adhered to the regimen

Proceed by artificially censoring subjects at the first visit in
which they are non-adherent to the regimen under
consideration

Ci (t) = 1− I[Āi (t) = 1̄]

This censoring will almost certainly induce a selection bias

If having more severe disease (unmeasured) is associated with
both poorer survival and lower adherence artificial censoring
will overestimate the treatment effect
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Inverse Probability Weighting

sw†i (t) =
t∏

k=0

P[Ci (k) = 0|C̄i (k − 1) = 0,Vi = vi ]

P[Ci (k) = 0|C̄i (k − 1) = 0, Z̄i (k) = z̄i (k), L̄i (k) = l̄i (k)]

The denominator is the probability that a subject is not
censored at time t given that he was not censored before time
t and his past treatment and covariate history

Confounders, such as hematocrit/hemoglobin, are included in
the weights instead of in the survival model

Creates a pseudo-population in which the probability of
adherence is independent of measured confounders

Standard (weighted) survival time methods are then used to
analyze the data

[Diggle et al., 2002, Hernán et al., 2004, Robins, 1999, Robins et al.,

2000, Hernán et al., 2000]
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No Unmeasured Confounders

Counterfactual outcomes: Tā is the time of death a subject
would have experiences had he/she received treatment history ā
(possibly counter-to-the-fact)

The assumption of No Unmeasured Confounders holds if

Tā

∐
A(k) | {Ā(k − 1) = ā(k − 1), L̄(k) = l̄(k)} ∀ ā(k − 1), l̄(k)

i.e. counterfactual outcome Tā and treatment received at time k, A(k),

are conditionally independent given the observed treatment and covariate

history among those alive at visit k

[Hernán et al., 2001, Robins, 1998a, Robins, 1999]
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IPW Kaplan-Meier Estimator

Estimate survival function under a defined treatment regimen

Pooled logistic regression model for survival weighted by sw †

logit[D(t) = 1|C̄ (t) = 0] = β0(t)

where β0(k) is a cubic spline.

The fitted values of β̂0(k) are used to obtain the estimated
Kaplan-Meier survival curve through

Ŝ(t) =
t∏

u=1

(1− β̂0(u))

Estimator is consistent provided:
1 weight model is correctly specified
2 no unmeasured confounders

[Robins and Finkelstein, 2000, Cole and Hernán, 2004]
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Analysis for two Defined Treatment Regimens I

Known Regimen Membership

Use IPW to weight the familiar Cox PH model
[Robins et al., 2000, Hernán et al., 2000]

λT (t|G ,V ) = λ0(t) exp(β1G + β′2V )

λ0(t) is an unspecified baseline hazard function

Let G be an indicator of membership in group 1

exp(β1) is the causal hazard ratio comparing survival under
full adherence to regimen 1 to survival under full adherence to
regimen 2
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Marginal Structural Cox Proportional Hazard Model

Fit MSM using a pooled weighted logistic regression model

logitP[D(t) = 1|D(t − 1) = 0,G ,V ] = β0(t) + β1G + β′2V

IPW induce a within-subject correlation so use robust variance
estimate from GEE (conservative)

MSMs will yield consistent estimates under assumptions of

correctly specified weight model for IPW

no unmeasured confounders

correctly specified marginal model for the effect of treatment
(regimen) on mortality



Causal Inference for the Comparison of Dynamic Treatment Regimens

Introduction & Motivation

Analysis for two Defined Treatment Regimens II

Unknown Regimen Membership

Subjects may be adherent to one, both or neither regimens at
some time points because of:

Overlapping target ranges
Different target ranges but similar rules outside these ranges
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Cloning Methodology
For each subject i = 1, . . . , n, clone k = 1, 2 is considered to be
following regimen k .

Aik(t) indicator of subject i ’s adherence to regimen k at t

Cik(t) indicator of subject i ’s artificial censoring to regimen k
at time t

sw †ik(t) IPW weights, i = 1, . . . , n, k = 1, 2, t = 0, 1, 2, . . .

Lik(t) = Li (t) covariates (identical across clones)

Clone correlation structure:

Within subject (between clone) correlations:

Same event time (if observed & uncensored for both regimens)
Depending on regimen similarity possible correlation in weights

Within clone correlation due to estimation of weights
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Cloning Methodology

Cloned IPW Weighted Log-Rank Test

Weighted log-rank test, Xie and Liu [Xie and Liu, 2005]

Rank tests for matched survival data, Jung [Jung, 1999]

For subjects i = 1, . . . , n and clones k = 1, 2

Xik = min(Tik ,Cik) is the observed event time

∆ik = I (Tik ≤ Cik) is the event indicator

ŝw †ik(t) consistent for true IPW wik(t)

dw
k (t) and Y w

k (t) are the weighted numbers of deaths and
subjects at risk.

Testing
H0 : Λ1(t) = Λ2(t) for all 0 ≤ t ≤ τ
H1 : Λ1(t) 6= Λ2(t) for some 0 ≤ t ≤ τ
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Cloning Methodology

Cloned IPW Weighted Log-Rank Test

Test statistic:

W ∗ =
1√
n

T∑
t=1

{
dw

1 (t)− Y w
i (t)

(
dw

1 (t) + dw
2 (t)

Y w
1 (t) + Y w

2 (t)

)}

Asymptotics of W ∗ for paired data, Lee, Wei and Ying [Lee
et al., 1993]

Convergence of weighted martingale process, Marzec and
Marzec [Marzec and Marzec, 1997]

Under H0 we have W ∗ → N(0, σ2) and a consistent estimate of σ̂2
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Cloned Marginal Structural Cox Proportional Hazard Model

In settings with a large number of small correlated groups of
survival observations, estimates from the Cox model are still
consistent [Lee et al., 1992]

Use the usual Cox MSM as before but now treat each clone as
an independent observation

λT (t|Gi ,Vi ) = λ0(t) exp(β1Gi + β′2Vi )

Uses GEE weighted logistic model with working independence

Consistent sandwich covariance estimate

Estimating the causal hazard ratio for full adherence to
regimen 1 versus full adherence to regimen 2
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Extensions to Multiple Treatment Regimens

Gik = k is a clone’s regimen assignment (k = 1, 2, . . . ,K )

Consider the following Cox proportional hazard MSMs:

1 Linear regimen effect

λT (t|Gik ,Vik) = λ0(t) exp(β1Gik + β′2Vik)

exp(β1) = causal HR for a 1 unit increase in regimen number
Assumes V effects constant for comparisons of any 2 regimens

2 Regimen treated as a factor variable

λT (t|Gik ,Vik) = λ0(t) exp[β1I(Gik =2) + . . .+ βK−1I(Gik =K) + β′KVik ]

exp(βk) = causal HR comparing regimen (k+1) with regimen 1
Other than the common effect of V , no structure is imposed
across the regimens
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Cloning Methodology

Extensions to Multiple Treatment Regimens

3 Linear regimen effect with a log time interaction

λT (t|Gik ,Vik) = λ0(t) exp(β1Gik + β2Gik ∗ log t + β′3Vik)

exp(β1 + β2 log t) = causal HR for a 1 unit increase in regimen
number at observation time t.
Common linear effect of log(t) on log HR across all regimens

4 Regimen treated as a factor with a log time interaction

λT (t|Gik ,Vik) = λ0(t) exp[β1I(Gik =2) + . . .+ βK−1I(Gik =K) +
γ1 log t ∗ I(Gik =2) + . . .+ γK−1 log t ∗ I(Gik =K) + β′KVik ]

This model introduces a within regimen effect of time
exp(β1 + γ1 log t) = causal HR comparing regimen 2 with
regimen 1 at observation time t
Within each regimen pair the log HR is assumed linear in log t

5 Spline in regimen number and effect of log time.

λT (t|Gik ,Vik) = λ0(t) exp[β1(Gik) + β2(Gik) ∗ log t + β′3Vik ]
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Cloning Methodology

Clones Simulation Study

Goals

Control the causal structure in the data across clones

Simulate a minimum amount of data: {Ti , Āi1, . . . , ĀiK}
Introduce selection bias to be corrected for through IPW

For each subject Ti ∼ Exponential(λk), Āik = 1̄

Cloning is simulated through coadherence probabilities:

Conditional probability of adherence to regimen j given
adherence to regimen k : pj|k = P[Aij(t) = 1|Aik(t) = 1]
Assume pj|k = pk|j = pjk = P[Aij = 1 & Aik = 1]

Fix pjj = 1, specify
(
K
2

)
coadherence probabilities
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Clones Simulation Study

Rate Parameter Selection

Select rate parameters so that HR persist through cloning

λ(t|Aik = 1)

λ(t|Aij = 1)
=
λk

λj

For K = 6, λ1, λ3, λ6 and pjk and solve using Maple

Introduction of Selective Nonadherence

Use a Copula model to generate (Ti ,Xi )

Choose conditional (on Xi ) probabilities that maintain pjks

Subjects with larger Xi (and therefore larger Ti ) are more
likely to be adherent to regimens with longer mean survival

Unweighted analyses will overestimate survival for these
regimens



Estimated Median Hazard Ratios (HR), Variances (Var) and 95%

Confidence Interval (CI) coverages from cloning methodology simulations

(500 replications each with nk = 2500)

Underlying Complete Clones, Unweighted Clones, IPW weighted
True HR Data HR HR Var CI Cov HR Var 95% CI CI Cov

Regimen 2 vs 3 0.91 0.90 0.90 0.023 0.95 0.90 0.024 (0.85, 0.96) 0.93
Regimen 4 vs 3 1.17 1.18 1.34 0.036 0.00 1.16 0.032 (1.10, 1.23) 0.96
Regimen 5 vs 3 1.28 1.29 1.47 0.040 0.00 1.30 0.036 (1.23, 1.38) 0.91
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Analysis of USRDS Dataset

United States Renal Data System (USRDS) data set based on
Medicare claims for ESRD treatment is available for analyses

Analysis restricted to the year 2003

Excluded subjects with HIV, AIDS and/or any cancer

33,873 adult subjects, 217,474 person-months of observation

Annual death rate of approximately 15%

Begin analysis at month 3 with up to 9 months of follow-up
per subject
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Analysis of USRDS Dataset

Compare survival under regimen with target (30, 36) to
regimens with targets (x − 3, x + 3), x = 31, . . . , 40

Zi (t)|Zi (t−1), L1i (t)1 ∈

 Zi (t − 1)× (0, 0.75) if L1i (t)] ≥ x − 3
Zi (t − 1)× (0.75, 1.25) if L1i (t) ∈ (x − 3, x + 3)
Zi (t − 1)× (1.25,∞) if L1i (t) ≤ x + 3

Weight model adjusted for month, gender, age, race,
hypertension, diabetes, current Hct and previous month’s Epo
dose

Additional weights calculated for administrative censoring and
censoring for loss to follow-up
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Analysis of USRDS Dataset

1 Linear regimen effect: estimated causal HR for a unit
increase in regimen number is 0.985 (0.980, 0.990)

2 Regimen treated as a factor variable:

Hazard Ratio 95% CI
G(28, 34) vs G(30, 36) 1.049 (0.984, 1.119)
G(29, 35) vs G(30, 36) 1.031 (0.966, 1.099)
G(31, 37) vs G(30, 36) 0.978 (0.917, 1.044)
G(32, 38) vs G(30, 36) 0.957 (0.897, 1.021)
G(33, 39) vs G(30, 36) 0.939 (0.880, 1.002)
G(34, 40) vs G(30, 36) 0.921 (0.863, 0.983)
G(35, 41) vs G(30, 36) 0.915 (0.857, 0.977)
G(36, 42) vs G(30, 36) 0.920 (0.861, 0.982)
G(37, 43) vs G(30, 36) 0.930 (0.871, 0.993)
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3 Linear regimen effect with a log time interaction

Month Hazard Ratio 95% CI
3 1.000 (0.994, 1.006)
4 0.950 (0.942, 0.957)
5 0.912 (0.900, 0.925)
6 0.883 (0.866, 0.900)
7 0.859 (0.839, 0.879)
8 0.838 (0.816, 0.862)
9 0.821 (0.796, 0.847)
10 0.805 (0.779, 0.833)
11 0.792 (0.763, 0.821)
12 0.780 (0.749, 0.811)
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4 Regimen treated as a factor variable with a log time
interaction

Plots of causal log hazard ratios at (a) 6 months and (b) 9
months comparing regimen with hematocrit target (x-3, x+3)
to regimen with target (30,36)
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G-Estimation of Structural Nested Failure Time Models

G-estimation

Alternative method to IPW and MSMs, do not need to
artificially censor

Still makes appropriate adjustment for effect of exposure in
the presence of a time-dependent confounder

Introduced by Robins and coauthors [Robins, 1986, Robins,
1987, Robins et al., 1992, Robins, 1992, Mark and Robins, 1993]

Full set of observable data: {Ti , L̄i (τ), Āi (τ)} were L are covariates,
A is treatment level and τ is maximum visit time

Specify a Structural Nested Failure Time Model (SNFTM) linking
counterfactual outcomes Tā to observed outcomes TĀ

Tā = H(ψ0) where H(ψ) ≡ h(TĀ, L̄, Ā, ψ)
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G-Estimation of Structural Nested Failure Time Models

Conditions for SNFTM: [Robins, 1998b]

1 Consistency Tā = h(TĀ, L̄, Ā, ψ) for all ψ if ā = Ā

2 TĀ = h(TĀ, L̄, Ā, 0) with probability 1 if and only if ψ0 = 0

So ψ0 = 0 represents the null hypothesis of no treatment effect

In survival setting can use an AFT model [Robins et al., 1992]

H(ψ) =

∫ T

0
exp[ψA(t)]dt

exp(−ψ0) is the expansion factor for survival comparing cts
treatment (ā = (1, 1, . . .)) to no treatment (ā = (0, 0, . . .))
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Alternative Specification of a SNFTM - Shift Functions

Lok et al 2004 parameterize a SNFTM through shift functions:

φ[t, l̄(k), ā(k)] = s−1
l̄(k),[ā(k−1),0̄]

◦ s̄l(k),[ā(k),0̄](t)

where

s̄l(k),g (t) = P{Tg > t|L̄(k) = l̄(k), Ā(k) = ḡ [h(k)],T > k}

is the conditional survival function for Tg given the full history up
until time k and given survival past time k

φ[t, l̄(k), ā(k)] is the time at which the survival proportion given a
treatment history of [ā(k − 1), 0̄] is the same as that at time t for
the history [ā(k), 0̄]
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Monte Carlo Algorithm for G-Estimation

1 Estimate ψ and test H0 : ψ0 = 0

For any ψ calculate Tφ
0 the counterfactual survival under

baseline regimen given shift function φ

Tφ
0 = φ[L(0),A(0)] ◦ φ[L̄(1), Ā(1)] ◦ · · · ◦ φ[L̄(T ), Ā(T )](T )

Regress A(t) on Ā(t − 1), L̄(t) and Tφ
0

Under no unmeasured confounders, θ the regression parameter
for Tφ

0 should be zero

If H0 : θ = 0 is rejected the current value of ψ is ruled out

ψ̂ is the value for which θ̂ = 0 and a (1−α) CI is given by the
set of ψ’s for which H0 was not rejected
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Monte Carlo Algorithm for G-Estimation

2 Estimate survival curve P(Tg > t) for treatment regimen g

Given ψ̂ use Monte Carlo to simulate an independent set of rv
with the same distribution as Tg . [Robins et al., 1992]

Generate tv from the empirical dist of T
φ(ψ̂)
0

Draw lv (m) from f {l(m)|̄l(m − 1), g [̄l(m − 1)], tv ,T > m}
Continue until tv ,g = φ−1{tv , l̄(m − 1), g [̄l(m − 1)]} ≤ m (i.e.
event occurs under g)

The set {tv ,g , v = 1, . . . ,V } will have the same distribution
as Tg and can, for example, be used to estimate the
Kaplan-Meier survival curve
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G-Estimation in the Epoetin Dosing Setting

Shift functions defined with reference to some baseline
treatment such as placebo or no treatment

For Z (t) dose of epoetin some possibilities:

A(t) = Z (t)− Z ∗ A(t) = [Z(t)−Z∗]
Z∗

A(t) = Z (t)− Z (0) A(t) = [Z(t)−Z(t−1)]
Z(t−1)

A(t) = Z (t)− Z (t − 1) A(t) = [Z(t)−Z(0)]
Z(0)

A(t) = 0 corresponds to a type of baseline regimen

Note A(t) ∈ (−∞,∞) and A(t) > 0 is an increase in dose
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G-Estimation in the Epoetin Dosing Setting

Consider the following deterministic rule

Z (t) = g ′[L̄(t), Z̄ (t − 1)] =

 (1 + q1)× Z (t − 1) if L1(t) > b2

(1 + q2)× Z (t − 1) if L1(t) ∈ [b1, b2]
(1 + q3)× Z (t − 1) if L1(t) < b1

and define the treatment regimen g as

A(t) = g [L̄(t), Z̄ (t − 1)] =
g ′[L̄(t), Z̄ (t − 1)]− Z (t − 1)

Z (t − 1)

Could use a shift function with exponential term:

exp {ψ1a(k) + ψ2a(k)I [l(k) ∈ (b1, b2)] + ψ3a(k)I [l(k) > b2]}

(direct effect of treatment a(t) for a current hematocrit level either
below, above or within the target range)
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G-Estimation of Structural Nested Failure Time Models

Advantages and Disadvantages

G-estimation

No artificial censoring (do not need to discard any data)

Only estimate the survival curve for one regimen at a time

Specification of blip/shift function not entirely natural

If ψ is high dimensional the grid search will be
computationally complex

IPW/MSM methods

Resemble and naturally extend standard statistical models (ex
causal Cox PH model)

Direct comparison of regimens through causal hazard ratio

Can not estimate interactions between treatment and
time-varying covariates
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Concluding Remarks

Concluding Remarks

Unique link between treatment regimen definition and
adherence

Three methods provide consistent estimates of survival under
a particular regimen

Provided methodology for comparing regimens when
adherence is not known at baseline

Allow subjects to contribute information to multiple regimens
Consistent estimate of hazard ratio from Cox PH MSM
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Concluding Remarks

Future Work

Loosen the current definition of adherence

ex) Artificially censor subjects after they have been
non-adherent for two consecutive visits
Current methods can be used, changes estimand

Extend cloning methodology

ex) Allow for a single cross-over or non-adherent period
After a clone is artificially censored for non-adherence they
re-cloned and each new “subclone” is followed once they
restart one of the two defined treatment regimens
May be justifiable only in a prevalent treatment setting

Apply g-estimation methodology to the available cohort of
USRDS data

Prediction?
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Cloned IPW Weighted Log-Rank Test
Define weighted at risk and event processes

Y w
k (t) =

∑
Y w

ik (t) with Y w
ik (t) = wik(t)I (Xik ≤ t)

dNw
k (t) =

∑
dNw

ik (t) with dNw
ik (t) = wik(t)dNik(t)

=

{
wik(Xik) if t = Xik & ∆ik = 1
0 otherwise

Test statistic:

W ∗ =
√

n

∫ ∞
0

H(t){d Λ̂w
1 (t)− d Λ̂w

2 (t)}

with

H(t) =
1

n

Y w
1 (t)Y w

2 (t)

Y w
1 (t) + Y w

2 (t)
Λ̂w

k (t) =

∫ t

0

dNw
k (s)

Y w
k (s)



Coadherence probabilities used to induce selective nonadherence in

cloning simulations for subjects generated under original regimen k̃ and

cloned under regimen j with baseline covariate X

(a) Regimen j = 1 clones

X

k̃ 0 1 2
1 1 1 1
2 4/6 3/6 2/6
3 3/6 2/6 1/6
4 2/6 1/6 0
5 2/6 1/6 0
6 2/6 1/6 0

(b) Regimen j = 2 clones

X

k̃ 0 1 2
1 4/6 3/6 2/6
2 1 1 1
3 4/6 3/6 2/6
4 3/6 2/6 1/6
5 2/6 1/6 0
6 2/6 1/6 0

(c) Regimen j = 3 clones

X

k̃ 0 1 2
1 3/6 2/6 1/6
2 4/6 3/6 2/6
3 1 1 1
4 4/6 3/6 2/6
5 3/6 2/6 1/6
6 2/6 1/6 0

(d) Regimen j = 4 clones

X

k̃ 0 1 2
1 0 1/6 2/6
2 1/6 2/6 3/6
3 2/6 3/6 4/6
4 1 1 1
5 2/6 3/6 4/6
6 1/6 2/6 3/6

(e) Regimen j = 5 clones

X

k̃ 0 1 2
1 0 1/6 2/6
2 0 1/6 2/6
3 1/6 2/6 3/6
4 2/6 3/6 4/6
5 1 1 1
6 2/6 3/6 4/6

(f) Regimen j = 6 clones

X

k̃ 0 1 2
1 0 1/6 2/6
2 0 1/6 2/6
3 0 1/6 2/6
4 1/6 2/6 3/6
5 2/6 3/6 4/6
6 1 1 1
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